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Abstract: Wind turbine plants are complex dynamic and uncertain processes driven by stochastic
inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal
and gravitational forces. Moreover, as their aerodynamic models are nonlinear, both modeling
and control become challenging problems. On the one hand, high-fidelity simulators should contain
different parameters and variables in order to accurately describe the main dynamic system behavior.
Therefore, the development of modeling and control for wind turbine systems should consider these
complexity aspects. On the other hand, these control solutions have to include the main wind turbine
dynamic characteristics without becoming too complicated. The main point of this paper is thus
to provide two practical examples of the development of robust control strategies when applied to
a simulated wind turbine plant. Extended simulations with the wind turbine benchmark model and
the Monte Carlo tool represent the instruments for assessing the robustness and reliability aspects of
the developed control methodologies when the model-reality mismatch and measurement errors are
also considered. Advantages and drawbacks of these regulation methods are also highlighted with
respect to different control strategies via proper performance metrics.

Keywords: wind turbine simulator; data-driven and model-based approaches; fuzzy identification;
on-line estimation; robustness and reliability

1. Introduction

Wind turbine plants represent complex and nonlinear dynamic systems usually driven by
stochastic inputs and different disturbances describing gravitational, centrifugal and gyroscopic loads.
Moreover, their aerodynamic models are uncertain and nonlinear, whilst wind turbine rotors are
subject to complex turbulent wind fields, especially in large systems, thus yielding to extreme fatigue
loading conditions. In this way, the development of viable, robust and reliable control solutions for
wind turbines can become a challenging issue [1,2].

Usually, a model-based control design requires an accurate description of the system
under investigation, which has to include different parameters and variables in order to model the
most important nonlinear and dynamic aspects. Moreover, the wind turbine working conditions
can produce further problems for the design of the control method. In general, commercial
codes are not able to adequately describe the wind turbine overall dynamic behavior; usually,
special simulation software solutions are used. On the other hand, control schemes have to manage
the most important turbine dynamics, without being too complex and unwieldy. Control methods
for wind turbines usually rely on the signals from sensors and actuators, with a system that connects
these elements together. Hardware or software modules elaborate these signals to generate the output
signals for actuators. The main feature of the control law consists of maintaining safe and reliable
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working conditions of the wind turbine, while achieving prescribed control performances and allowing
for optimal energy conversion, as shown, e.g., in recent works applied to the same wind turbine model
considered in this work [3].

Today’s wind turbines can implement several control strategies to allow for the
required performances. Some turbines use passive control methods, such as in fixed-pitch,
stall control machines. In this case, the system is designed so that the power is limited above rated wind
speed through the blade stall. Therefore, the control of the blades is not required [1]. In this case,
the rotational speed control is proposed, thus avoiding the inaccuracy of measuring the wind
speed. Rotors with pitch regulation are usually used for constant-speed plants, in order to provide
a power control that works better than the blade stall solution. In these machines, the blade pitching
is controlled in order to provide optimal power conversion with respect to modeling errors, wind
gusts and disturbance. However, when the system works at constant speed and below rated wind
speed, the optimal conversion rate cannot be obtained. Therefore, in order to maximize the power
conversion rate, the rotational speed of the turbine must vary with wind speed. Blade pitch control
is thus used also above the rated wind speed [1]. A different control method can introduce the yaw
regulation to orient the machine into the wind field. A yaw error reference from a nacelle-mounted
wind direction sensor system must be included in order to calculate this reference signal [4].

Regarding the regulation strategies proposed in this paper, two control design examples are
described and applied to a wind turbine system. The wind turbine model exploited in this work is
freely available for the MATLAB R© and Simulink R© environments, and already proposed as benchmark
for an international competition regarding the validation of fault diagnosis and fault tolerant control
approaches [3].

In particular, a first data-driven method relying on a fuzzy identification approach to the
control design is considered. In fact, since the wind turbine mathematical model is nonlinear with
uncertain inputs, fuzzy modeling represents an alternative tool for obtaining the mathematical
description of the controlled process. In contrast to purely nonlinear identification schemes
(see, e.g., [5]), fuzzy modeling and identification methods are able to directly provide nonlinear models
from the measured input-output signals. Therefore, this paper suggests to model the wind turbine
plant via Takagi–Sugeno (TS) fuzzy prototypes [6], whose parameters are obtained by identification
procedures. This approach is also motivated by previous works by the same authors [7]. On the other
hand, concerning the control design, the paper proposes also a fuzzy control method for the regulation
of the blade pitch angle, and the generator torque of the wind turbine system.

With respect to similar works (see, e.g., [8]), this paper suggests an off-line identification approach,
without any on-line optimization schemes, thus enhancing real-time implementations. Note also
that the works by the same authors (see, e.g., [9]), addressed a different design procedure of the
fuzzy regulator, that consists of fuzzy PI controllers. On the other hand, this paper proposes the direct
estimation of the fuzzy regulator by means of an identification scheme.

Regarding the second model-based strategy presented in this paper, it relies on an adaptive
control scheme [10]. Again, with respect to pure nonlinear control methods [11], it does not require
a detailed knowledge about the model structure. Therefore, this work suggests the implementation
of controllers based on adaptive schemes, used for the recursive derivation of the controller model.
In particular, a recursive Frisch scheme extended to the adaptive case for control design is considered
in this study, as proposed, e.g., in [9] by the same authors, which makes use of exponential
forgetting laws. This allows the on-line application of the Frisch scheme to derive the parameters of
a time-varying controller.

Since it is necessary to evaluate the robustness and the reliability of the designed control methods
with respect to modeling uncertainties, disturbance, and measurement errors, the verification and
validation tools use extensive Monte Carlo simulations. In fact, the wind turbine system contains
elements that cannot be described by analytical models. Thus, the Monte Carlo analysis represents
a solution for testing the robustness and reliability features of the control schemes when applied to the
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wind turbine model. This paper compares the proposed methodologies also with respect to different
control methods based on sliding mode techniques, neural controllers, or gain scheduling methods.
However, with respect again to [9] by the same authors, different comparisons are proposed in this
work that exploit proper performance metrics.

It is worth highlighting the main features of the proposed data-drive and model-based approaches.
Indeed, the term “model-based” could be misleading in this case. In fact, the adaptive control
approach suggested in this work should be considered as “active” control method, instead. In fact,
the control design relies on an identified model of the process under investigation. In this way,
the parameters of the process model are identified on-line via a recursive estimation procedure,
in order to adapt this identified model with respect to both the different operating conditions and
possible process uncertainty. Due to this adaptation scheme, the control design technique is able
to achieve robustness characteristics with respect to possible uncertainty and disturbance effects.
On the other hand, the proposed on-line control scheme can be applied to nonlinear dynamic processes,
due to its capabilities to recursively track the changes of the controlled process. Moreover, the adaptive
control law can be designed by means of different rules that are functions of the process model
parameters, thus making the control design solutions robust with respect to disturbances. Another key
aspect concerns the identification method exploited for estimating the model parameters. The proposed
approach relies on an Error-In-Variable (EIV) scheme [12], which is more general and less conservative
than standard identification techniques. For example, the classical Least Square Method (LSM) assumes
that only the output is possibly affected by uncertainty (noise) [13]. Therefore, the EIV identification
scheme proposed in this work for the estimation of the controller parameters makes the developed
solutions much more robust and reliable than standard control schemes. Finally, with respect to
standard PID regulators, which can be seen as ‘passive’ control solutions, they are not able to track the
changes of the controlled process, since their parameters are usually optimized on the basis on the
nominal process model [14].

Finally, this work is organized as follows. Section 2 recalls the wind turbine model considered for
control design purposes. Section 3 addresses the data-driven scheme exploited for the derivation of
the fuzzy controller, proposed in Section 3.1. On the other hand, the model-based control design is
considered in Section 3.2, based on its mathematical derivation also described in Section 3. The achieved
results and comparisons with different control strategies are outlined in Section 4. The robustness and
reliability features of the developed control strategies are also investigated. Finally, Section 5 ends the
paper by summarizing the main achievements of the work.

2. Wind Turbine Simulated Model

Today’s wind turbines contribute to a larger and larger part of the world’s power production.
At the same time the size of the standard turbine has been increasing, as well. Turbines in the
megawatt size, as most often installed at present, are expensive, and hence the reliability of their
control techniques represents an important issue. They should be able to produce as much time
as possible. A way to contribute to ensure this consists in introducing advanced control systems
on the wind turbines. The state-of-the-art of advanced control schemes for industrial wind turbines
shows that they are quite simple and often conservative [15]. For example, turbines deployments
are turn off even at earlier malfunctions, to wait for service. Consequently, the use of advanced
control schemes could improve the on-time of the turbine, even though that might result in production
with limited power for some anomalous working conditions [15]. Some works on advanced control
solutions for wind turbines were proposed. For example, an observer based scheme applied to the
pitch system was presented in [16]. On the other hand, priority relation based scheme for change
detection was presented in [17], whilst an unknown input observer applied to the wind turbine
drive train in [18]. Furthermore, the wind turbine electrical conversion system was investigated
in [19–21]. Therefore, in general, it would be beneficial to compare different control schemes for wind
turbine application in order to find the best solutions, as considered in this paper. However, since
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a wind turbine is a large and complex system such a comparison can only be performed on a limited
set of situations. Therefore, in order to test different advanced control techniques for wind turbine
applications, this paper considered the benchmark model of a wind turbine process on system level,
containing sensors, actuators and systems typical of an energy conversion plant. This benchmark
model describes a realistic generic three-bladed horizontal variable speed wind turbine with a full
converter coupling, formerly proposed in [22]. This generic turbine has a rated power of 4.8 MW.
Since this model works on a system level, the fast control loops of the converters are not considered.
Moreover, since it is a model on system level, its converter and pitch system models are simplified,
because they are controlled by internal governors working at higher frequencies than the system model.

This section outlines the wind turbine model, whose sampled inputs and outputs will be used for
the proposed control designs, as shown in Section 3. More details concerning the accurate derivation
of the simulator model can be found in preliminary works [23,24] and definitely presented in [22].
In fact, this simulator was proposed for an international competition regarding fault diagnosis and
fault tolerant control techniques started in 2009, whose results were summarized in [3,25].

The wind turbine system exploited in this work uses a nonlinear dynamic model representing the
wind acting on the wind turbine blades, thus producing the movement of the low-speed rotor shaft.
The higher speed required by the electric converter is produced by means of a gear box. The simulator
is described in more detail, e.g., in [22,25]. A scheme of the wind turbine simulator considered in this
paper is represented in Figure 1 with its main blocks.

Gear Box
Generator

Wind

Aerodynamic
model

Controller

b(t)

v(t)

w (t)
r

w (t)g

t (t)g

P (t)g

t (t)rP (t)g

w (t)g

Figure 1. Scheme of the wind turbine process.

Both the generator speed ωg and the generator power Pg are controller by means of the two control
inputs representing the generator torque τg(t) and the blade pitch angle β(t). Several signals can be
acquired from the wind turbine simulator. In particular, the main signals available from the wind
turbine simulator and used for control purpose are listed in the following:

β: blade pitch angle (deg);
ωg: generator/converter speed (rad/s);
Pg: generator power Pg (W);
ωr: rotor speed (rad/s);
τr: requested torque (N m);
τg: generator torque (N m);
τaero: aerodynamic torque (N m);
v: wind speed (m/s);

The aerodynamic model defining the aerodynamic torque provides the τaero(t) signal, which is
a nonlinear function of the wind speed v(t), and it is not highlighted in Figure 1 since included
in the ‘Aerodynamic model’ block. This measurement is very difficult to be acquired correctly,
as described in [25].

The aerodynamic model reported in Figure 1 is described by the following relation:

τaero(t) = Cp (βr(t), λ(t))
ρ A v3(t)
2 ωr(t)

(1)

where the variable ρ represents the air density, whilst A is the effective rotor area.
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The pitch system implemented in the wind turbine benchmark as depicted in Figure 1 uses
a second-order transfer function, represented by Equation (2):

βr(s)
β(s)

=
ω2

n
s2 + 2 χ ωn s + ω2

n
(2)

where βr is the actuated pitch angle, which is exploited in Equation (1), whilst β is the controlled
pitch angle. ωn is the natural frequency of the pitch actuator model, and χ its damping ratio.

Another important variable is represented by the so-called tip-speed ratio, which is defined as:

λ(t) =
ωr(t) R

v(t)
(3)

with R the rotor radius. Cp(·) represents the power coefficient, that is normally represented via
a two-dimensional map [25]. The expression of Equation (1) allows the computation of the signal
τaero(t) (highlighted in Figure 1) by means of the estimated wind speed v(t) and the signals β(t)
and ωr(t). Due to the uncertainty of the wind speed, the estimate of τaero(t) is considered affected
by an unknown measurement error, which justifies the robust approaches described in Section 3.
Moreover, the nonlinearity represented by the expressions of Equations (1) and (3) motivates the
required reliable and robust control approaches suggested in this work.

The wind turbine simulator includes a two-mass model that is exploited to describe the drive-train
system depicted in Figure 1, as shown by the following linear state-space representation [22]: ω̇r(t)

ω̇g(t)
θ̇∆(t)

 = Adt

 ωr(t)
ωg(t)
θ∆(t)

+ Bdt

[
τaero(t)
τg(t)

]
(4)

where the matrices Adt and Bdt are defined as:

Adt =


− Bdt−Br

Jr

Bdt
Ng Jr

−Kdt
Jr

ηdt Bdt
Ng Jg

− ηdt Bdt
N2

g
−Bg

Jg

ηdt Kdt
Ng Jg

1 − 1
Ng

0

 (5)

and:

Bdt =

 −
1
Jr

0
0 − 1

Jg

0 0

 (6)

where Jr is the momentum of inertia of rotor shaft, Kdt is the torsion stiffness of the drive-train, Bdt is
the torsion damping coefficient of the drive-train, Bg is the viscous friction of the generator shaft, Ng is
the gear ratio, Jg is the moment of inertia of the generator shaft, ηdt is the efficiency of the drive-train,
and θ∆ is the torsion angle of the drive train. Note that the benchmark simulator considered in this
work does not include possible nonlinear gearbox dynamics, as addressed e.g., in [26–28]. However,
the data-driven approach proposed in this study could be able to include this further nonlinearity for
the design of the control solutions.

Moreover, the generator/converter dynamics are described as a first-order transfer function,
as highlighted by Equation (7):

τg(s)
τr(s)

=
αgc

s + αgc
(7)

s being the Laplace operator, 1/αgc is the time constant of the generator/converter, whilst the power
Pg produced by the generator is given by Equation (8):
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Pg(t) = ηg ωg τg(t) (8)

with ηg denoting the efficiency of the generator. More details regarding the considered simulator are
in [25].

Under these assumptions, the complete state-space description of the wind turbine model has the
form of Equation (9): {

ẋc(t) = fc (xc(t), u(t))
y(t) = xc(t)

(9)

where u(t) =
[
β(t), τg(t)

]T , y(t) =
[
Pg(t), ωg(t)

]T , and xc(t) =
[
Pg(t), ωg(t)

]T are the control inputs,
the monitored output measurements, and the state vector, respectively, as shown in Figure 1. Pg(t) is
the generator power measurement, whilst fc (·) represents the continuous-time nonlinear function that
will be approximated via discrete-time models from N sampled data uk and yk, with the sample index
k = 1, 2, . . . N, as presented in Section 3. The model parameters, and the map Cp (β, λ) are chosen in
order to represent a realistic wind turbine plant [25].

Note that Section 4.2 will analyze the reliability and robustness properties of the developed
controllers when parameter variations and measurement errors are considered. This investigation will
rely on the Monte Carlo tool, since the control behavior and the tracking capabilities depend on both
the model-reality mismatch effects and the input-output uncertainty levels. Therefore, this analysis will
be performed by describing the parameters of the wind turbine model simulator as Gaussian stochastic
processes with average values corresponding to the nominal ones summarized in Table 1 [25].

Table 1. Wind turbine benchmark parameters.

Variable R χ ωn Bdt Br

Nominal value 57.5 m 0.6 11.11 rad s−1 775.49 N m s rad −1 7.11 N m s rad −1

Variable Bg Kdt ηdt Jg Jr

Nominal value 45.6 N m s rad −1 2.7 · 109 N m rad −1 0.97 390 kg m2 55 · 106 kg m2

Moreover, the input and output measurements available from the wind turbine simulator are
assumed to be acquired via sensors [25] that introduce additive Gaussian noise processes with zero
mean and standard deviation values summarized in Table 2.

Table 2. Sensor standard deviation values used in the wind turbine simulator [25].

Variable v(t) ωr ωg τg Pg β

Std. Dev. Value 0.5 m/s 0.025 rad/s 0.05 rad/s 90 Nm 103 W 0.2 deg

Note that the parameters summarized in Table 2 are the values implemented in the wind
turbine benchmark simulator that has been used in this work for the validation of the proposed
control solutions. These values represent the uncertainty and disturbance effects of a realistic
wind turbine deployment, as modeled by the wind turbine benchmark simulator presented and
developed in [25].

On the other hand, this benchmark model set-up uses a predefined wind speed sequence v(t)
consisting of real measured wind data of a wind park from 0 to 4400 s. Figure 2 highlights that this
wind speed covers the range from 5 to 20 m/s, with a few spikes at 25 m/s, which is a good coverage
of normal operational for a wind turbine.
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Figure 2. The wind speed sequence v(t) used in the benchmark model.

It is worth noting also that the nonlinearity represented by Equations (1) and (3) is sketched in
Figure 3, for different values of λ(t) (i.e., v(t)) and β(t).
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Figure 3. Examples of power coefficient function (a) and power curve (b).

Figure 3 also shows the power curve that highlights the the so-called partial load (Region 1)
and full load (Region 2) working conditions of a wind turbine [22]. In fact, the baseline controller
implemented in the wind turbine simulator works in these two operating conditions. A schematic
diagram of the baseline wind turbine controller system is detailed in Figure 4.

Partial load
controller
(region 1)

Full load
controller
(region 2)

Switch

Wind
turbine
model

Wind (t)v�(t) = 0

Region 1

Region 2

�(t)

� (t)r

P (t)g

�(t)

� (t)r

Baseline controller

� (t)g

� (t)g

P (t)g

� (t)g

� (t)g

P (t)g

� (t)r

Figure 4. The details of the baseline wind turbine controller.

In particular, Figure 4 highlights that in partial load working condition, the optimal tracking is
achieved without any pitching of the blades, which are fixed to zero degrees. In this case, λ is constant
at its optimal value λopt, that is defined by the maximal value of the power coefficient map Cp when
β = 0 degrees, as shown in Figure 3a. Therefore, this working condition is completely defined by
setting τg = τr (i.e., the generator torque is equal to the required reference value) with pitch angle
β = 0 degrees.
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The reference torque signal τr shown in Figure 1 is computed as:

τr = Kopt ω2
g (10)

where:

Kopt =
1
2

ρ A R3 Cpmax

λ3
opt

(11)

with Cpmax the maximal value of Cp, related the to λopt, i.e., the optimal tip-speed ratio, as sketched
in Figure 3a.

When the power reference Pr = 4.8 MW is achieved by the wind turbine system (it corresponds
to the so-called rated power) [22], and the wind speed v(t) increases, the controller is switched to
the control Region 2 (full load condition). In this working condition (Region 2), the control objective
consists of tracking the power reference Pr, obtained by regulating β, such that the Cp is decreased,
as shown in Figure 3a. In a traditional industrial control scheme, usually a PI controller is used to keep
ωg at the prescribed value by changing β; the second input of the controller is τg.

The baseline controller considered in this work was implemented with a sample frequency at
100 Hz, i.e., Ts = 0.01 s. In full load conditions, i.e., in Region 2, the actuated input β is controlled via
the relations of Equation (12) [25]:{

βk = βk−1 + kp ek +
(
ki Ts − kp

)
ek−1

ek = ωgk −ωnom
(12)

with the sample index k = 1, 2, . . . , N. The parameters for this PI speed controller are ki = 0.5 (1/s)
and kp = 3 (deg/rad/s), with sampling time Ts = 0.01 s, as reported in [25]. For the case of the wind
turbine system considered in this paper, with rated power Pr = 4.8 MW, the constant ωnom is equal to
162 (rad/s) [22].

The control of the further input τg shown in Figure 1, a second PI regulator is used, in the form of
Equation (13): {

τrk = τrk−1 + kp ek +
(
ki Ts − kp

)
ek−1

ek = Pgk − Pr
(13)

The parameters for this second PI power controller are ki = 0.014 and kp = 447× 10−6 [25].
Finally, note that in Region 2 (partial load, below the rated wind speed) the wind turbine is

regulated only by means of the torque input τg(t). In this situation, the blade pitching system is not
exploited to achieve the optimal power conversion, as highlighted in Figure 4. On the other hand,
in Region 2 (full load, above the rated wind speed), the wind turbine control regulates both the
blade pitch angle β(t) and the control torque τg(t). The wind turbine Simulink R© model considered in
this work includes also saturation blocks that limit the values of the control signals, which were not
reported in Figures 1 and 4.

3. Data-Driven and Model-Based Control Designs

This section describes the two approaches considered in this paper for obtaining the control laws
by using data-driven and model-based methodologies. Once a suitable mathematical description of the
monitored process is provided, the derivation of the controller structure is sketched in Section 3.1 for
the fuzzy approach, whilst Section 3.2 proposes a different method relying on an adaptive technique.

The first method proposed in this paper for the derivation of the wind turbine controller is
based on a fuzzy clustering technique to partition the available data into subsets characterized by
linear behaviors. The integration between clusters and linear regression is exploited, thus allowing
for the combination of fuzzy logic techniques with system identification methodologies. These tools
are already available and implemented in the MATLAB R© Fuzzy Modeling and IDentification (FMID)
Toolbox recalled below [6]. This study proposes the use of TS fuzzy prototypes since they are able to
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model nonlinear dynamic systems with arbitrary accuracy [6]. The switching between the local affine
submodels is achieved through a smooth function of the system state defined exploiting the fuzzy set
theory and its tools.

In more detail, the fuzzy estimation scheme relies on a two-step algorithm, in which, the working
regions are first defined by exploiting the data fuzzy clustering tool, i.e., the Gustafson-Kessel (GK)
method [6]. On the other hand, the second step performs the identification of the controller structure
and its parameters using the estimation method proposed by the same authors in [7]. This estimation
approach can be considered as a generalization of the general least-squares method for hybrid models.

Under these assumptions, the TS fuzzy prototypes have the form of the model of Equation (14):

yk+1 =
∑M

i=1 µi (xk) yi

∑M
i=1 µi (xk)

(14)

where yi = aT
i x + bi, with ai the parameter vector (regressand), and bi is the scalar offset. x = xk

represents the regressor vector, which contain delayed samples of the signals uk and yk.
Note that the discrete-time description of Equation (14), after the proper estimation of the

parameter vector [6], will be used for reconstructing the sampled outputs Pg(t) and ωg(t) of the
continuous-time nonlinear model of Equation (9) fed by the sampled input signals β(t) and τg(t).

The antecedent fuzzy sets µi that determine the switching among the different submodels i in
Equation (14) are estimated using the input-output data acquired from the wind turbine simulator,
i.e., the input and output sampled signals β(t), τg(t) and ωg(t) and Pg(t). These data are organized
into proper clusters where affine relations hold, as described in [6]. The consequent parameters ai and
bi are also identified from these input-output data by means of the estimation methodology proposed
in [7]. This identification scheme exploited for the estimation of the TS model parameters has been
integrated into the FMID toolbox for MATLAB R© by the authors. This approach is preferable when
the TS model of Equation (14) is used as predictor, since it derives the consequent parameters via the
so-called Frisch scheme, developed for the Errors-In-Variables (EIV) structures [7].

Once the description of the monitored process is obtained in the form of Equation (14),
the data-driven approach for the design of the fuzzy controller proposed in this work is presented in
Section 3.1.

The second approach exploited for obtaining the mathematical description of the wind turbine
system under investigation is based on a recursive methodology, which will be used for the design
of the second control strategy presented in Section 3.2. An on-line version of the batch Frisch
scheme estimation methodology summarized above is recalled in the remainder of this section
for estimating the parameters of dynamic EIV models. For the derivation of the adaptation law,
an on-line bias-compensating algorithm is also implemented. Thus, the on-line Frisch scheme
estimation is generalized to enhance its applicability to real-time implementations. Moreover, by
means of an exponential forgetting factor included in the adaptation law, the algorithm is able to deal
with Linear Parameter-Varying (LPV) structures, that are exploited in connection with the model-based
design of the adaptive control scheme, presented in Section 3.2. Note that the adaptive algorithm
proposed here exploits an iterative procedure that starts from an initial controller estimated off-line,
for example using the baseline controller already implemented in the wind turbine simulator, and
described in Section 2. This initial controller model is subsequently adapted on-line using the recursive
laws in order to track the different operating conditions of the process under investigation.

Thus, the considered scheme is proposed for the on-line identification of the process modeled by
the following transfer function G(z):

G(z) =
A(z−1)

B(z−1)
=

b1 z−1 + . . . + bnb z−nb

1 + a1 z−1 + . . . + ana z−na
(15)
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where ai, bi, na and nb represent the unknown parameters and the structure of the model, defining the
polynomials A(z−1) and B(z−1), whilst z is the discrete-time complex variable.

The parameter vector describing the linear relationship is given by:

θ =
[
a1 . . . ana b1 . . . bnb

]T (16)

whose extended version is defined as in Equation (17):

θ̄ =
[
1 θT

]T
(17)

An equivalent expression of the considered relations is obtained by using vector and matrix
notations, in the form of Equation (18):

ψT
k θ̄ = 0 (18)

where the regressor vector ψk is defined as:

ψk =
[
−yk − yk−1 . . . − yk−na uk−1 . . . uk−nb

]T (19)

where the subscript k denotes the sample index.
The Frisch scheme provides the estimates of the measurement errors affecting the input and

output signals uk and yk, i.e., σu and σy and θ for a linear time-invariant dynamic system. Note that the
polynomial orders na and nb in the relation of Equation (15) are assumed to be fixed in advance.

From the Frisch scheme method, the following expression is considered:(
Σψ − Σψ̃

)
θ̄ = 0 (20)

where the noise covariance matrix is given by:

Σψ̃ =

[
σy Ina+1 0

0 σu Inb

]
(21)

which are approximated by the sample covariance matrix over N samples:

Σψ̃ ≈
1
N

N

∑
k=1

ψk ψT
k (22)

Thus, the Frisch scheme aims at providing suitable noise variances σu and σy such that
(

Σψ − Σψ̃

)
results to be a matrix singular positive semidefinite as it is rank-one deficient. On the other hand,
the system represented by the expression of Equation (20) can be solved, and θ̄ represents its solution.

The expression of Equation (23) is determined:

εk
(
θ̄
)
= A(z−1) yk − B(z−1) uk (23)

whilst the so-called sample auto-covariance is defined in the form of Equation (24):

rεh, N =
1
N

N

∑
l=1

εl
(
θ̄
)

εl+h
(
θ̄
)

(24)

where the subscript h in Equation (24) indicates a time-shift.
The on-line control development requires a recursive estimate of the model parameters

represented by the vector θk of Equation (15), while the input and output data uk and yk acquired
on-line by the dynamic process of the wind turbine system. In fact, the adaptive control law computed



www.manaraa.com

Appl. Sci. 2018, 8, 29 11 of 28

at time step k is based on the recursive estimate of a model of the process, which is derived exploiting
the dynamic data up to the sample k. In this way, the algorithm of the Frisch scheme defined by the
expressions of Equations (20), (22) and (24) is expressed by means of an on-line scheme.

Note that the expressions of Equations (22) and (24) are required in their recursive form.
Therefore, whilst the derivation of the on-line form of the covariance matrix update is easily obtained
as in the form of Equation (25):

Σψ̃k
=

k− 1
k

Σψ̃k
+

1
k

ψk ψT
k (25)

the formulation of the auto-covariance expression rεh, k can be obtained recursively for 1 ≤ l ≤ k only
if the approximated expression of Equation (26) is considered:

εl
(
θ̄k
)
≈ εl

(
θ̄l
)

(26)

for l < k. In this way, only the residual εk
(
θ̄k
)

has to be computed at time step k using the lagged data
in the vector ψk and the updated estimate θ̄k of the model parameters. The on-line computation of the
expression of the auto-covariance matrix of Equation (27):

rεh, k =
k− 1

k
rεk, k−1 +

1
k

εk
(
θ̄k
)

εk+h
(
θ̄k
)

(27)

can be achieved using only the vector εk+h
(
θ̄k
)

at each time step. The initial values θ0, Σψ̃0
and rε0, h

for the recursive algorithm are equal to the variables of the classic Frisch scheme batch procedure.
Since variations of system properties have to be tracked on-line, in order to cope with

time-varying systems, this paper considers a further modification of the recursive estimation scheme.
This point can be achieved by placing more emphasis on the more recent data, while forgetting the
older ones. Therefore, the methodology represented by the expressions of Equations (25) and (27)
with the approximation of Equation (26) is implemented by including the so-called exponential
forgetting factor. This is achieved in practice by defining the new expressions of the sample covariance
and auto-covariance matrices in the form of Equation (28):{

HΣψ̃ k
= ω(δ)Σψ̃k

hεh, k = ω(δ) rεh, k
(28)

where ω(δ) is a scaling factor that coincides with k when no adaptation is introduced. In this way,
the updated expressions have the form:{

HΣψ̃ k
= (1− δ) HΣψ̃ k−1

+ δ ψk ψT
k

hεh, k = (1− δ) hεh, k−1 + δ εk
(
θ̄k
)

εk+h
(
θ̄k
) (29)

with 0 < δ < 1 representing the forgetting factor. Thus, the adaptive Frisch scheme algorithm is
implemented via Equation (29) in three steps. First, θ0, Σψ̃0

and rε0, h with h ≤ na are initialized.
Moreover, at each recursion step, by means of rεh, k, the noise variances σu and σy are computed.
Finally, at each recursion step, θ̄k is determined by solving Equation (20) via the expression of
Equation (29). In this way, the vector θk contains the estimates of the model parameter derived
at the step k.

The results achieved by the on-line identification method recalled in this section were obtained in
the MATLAB R© and Simulink R© environments as summarized in Section 4.

Finally, once the parameters θk of the discrete-time linear time-varying model of the nonlinear
dynamic process of Equation (9) have been computed at each time step k, the adaptive controller is
derived as summarized in Section 3.2.
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3.1. Data-Driven Fuzzy Control Strategy

This section describes the derivation of the fuzzy controller model. Once a reasonably accurate
fuzzy description of the considered benchmark has been available, as described above, it is used
off-line to directly estimate the nonlinear fuzzy controllers. As already remarked, this design procedure
differs from the approach proposed in [29]. In fact, the control design proposed in this paper relies
on the so-called inverse model principle, which is solved using the fuzzy identification approach
recalled above.

Note that as explained in the following, the fuzzy methodology is exploited twice. First, the fuzzy
modeling and identification approach is used to derive a fuzzy representation of the process
under investigation, by means of its sampled inputs and outputs. Second, by means of this fuzzy model,
and in particular using its state, the design of the fuzzy controller can be achieved. The derivation of
the fuzzy controller model is performed by employing the states of the process fuzzy model. However,
the estimation of the parameters of the fuzzy controller are achieved by minimizing the error between
the reference power Pr and the controlled power Pg(t), thus leading to maximize the wind turbine
generated power.

With reference to stable fuzzy systems, whose inverted dynamics are also stable, a nonlinear
controller can be simply designed by inverting the fuzzy model itself. Moreover, when modeling
errors and disturbances are not present, this controller is able to allow for exact tracking with
zero steady-state errors. However, modeling errors and disturbance effects are always present in
real conditions, which can be tackled by directly identifying the controller model (i.e., the inverse
controlled model) using the FMID approach. Differently from [29], a robust control strategy is thus
achieved by minimizing a cost function which includes the difference between the desired and
controller outputs, and a penalty on the system stability. In general, a nonconvex optimization
problem has to be solved, which hampers the direct application of the proposed approach. However,
the optimization scheme described in [7] can be exploited, which is based on a parametrized search
technique applied at a higher level to formulate the control objectives and constraints.

Note that, as remarked in Section 2, the fuzzy approach proposed in this work is able to
provide a high-fidelity description of the wind turbine behavior, which already includes uncertainty
and disturbance, as described, e.g., in [22]. The fuzzy approach is thus used again to derive
the formulation of the controller in the form of TS prototypes. The parameters of the controller
fuzzy model are estimated by minimizing the difference between the monitored outputs and
the reference ones, taking into account the disturbance and the uncertainty affecting the wind
turbine process. Therefore, the approach proposed in this work is able to cope with external disturbance
modeled in the wind turbine benchmark.

In this way, the estimated controller based on the process inverse model and approximated via
a fuzzy prototype is able to describe the complete behavior of the monitored plant in its different
working conditions (i.e., partial and full load situations). In fact, the rule-based fuzzy inference system
of Equation (14) has been derived for modeling the wind turbine dynamic process of Equation (9) in
its equivalent discrete-time form of Equation (30):

yk+1 = f (xk, uk) (30)

and, in particular, the TS fuzzy representation has the form of Equation (31):

yk+1 =
∑M

i=1 µ
(m)
i

(
x(m)

k

) (
a(m)

i x(m)
k + b(m)

i

)
∑M

i=1 µ
(m)
i

(
x(m)

k

) (31)

The current state xk = [yk, . . . , yk−n+1, uk−1, . . . , uk−n+1]
T and the input uk represent the inputs

that drive the model of Equation (31). Its output represents the prediction of the system output at
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the next sample yk+1. The model of Equation (31) requires the estimated membership functions µ
(m)
i ,

the state x(m) and the parameters a(m)
i , b(m)

i of the controlled system, which are denoted by the
superscript (m).

Therefore, the input uk generated by the control law feeds the monitored process such that its
output yk+1 asymptotically follows the desired (reference) output rk+1. This behavior is obtained by
using the inverse model principle, represented by the expression of Equation (32):

uk+1 = f−1 (xc
k, rk) (32)

that is a nonlinear function of the vector xc
k and the reference rk.

However, in general, with reference to Equation (32), it is difficult to determine the analytical
expression of the inverse function f−1(·). Therefore, the methodology proposed in this work suggested
to exploit the identified fuzzy TS prototype of Equation (31) to provide the particular state x(m)

k at

each time step k. In this way, from this mapping, the inverse mapping uk+1 = f−1
(

x(c)k , rk

)
is directly

identified the form of Equation (14), if the controlled system is stable, and in particular in the form of
Equation (33):

uk+1 =
∑M

i=1 µ
(c)
i

(
x(c)k

) (
a(c)i x(c)k + b(c)i

)
∑M

i=1 µ
(c)
i

(
x(c)k

) (33)

where the state x(c)k = [x(m)
k , rk−1, . . . , rk−n+1]

T and the reference rk signal represent the inputs of
the identified controller model. The model of Equation (33) contains the estimated membership
functions µ

(c)
i and the parameters a(c)i , b(c)i of the identified controller model, that are denoted by the

superscript (c). The complete scheme is outlined in Figure 5.

Wind turbine
fuzzy model

z
-1

z
-1

r

y
u

k

k

k

x
(m)

k

x
(c)

k

uk-1

y
k-1

y
k-1 Controller

fuzzy model

Figure 5. The fuzzy controller based on the inverse process model principle.

Note that Figure 5 sketches the general principle of the design of the controller for a system with
input uk and output yk. On the other hand, the signal rk represents the generic set-point to be tracked
(i.e., Pr or ωnom) depending on the working region (1 or 2) and the controlled output (i.e., the sampled
signal Pg(t) or ωg(t)). Under this assumption, the identification of the fuzzy controller parameters
leads to minimize the difference between rk and yk. It is not required that rk equals yk, thus making the
problem feasible within the selected degree of accuracy.

Figure 5 highlights the series connection between the controller models (i.e., the inverse process
model identified using the fuzzy systems) and the process model itself (described by means of
fuzzy models), which should lead to an identity mapping as in Equation (34):

yk+1 = f
(

x(m)
k , uk

)
= f

(
x(m)

k , f−1
(

x(c)k , rk

))
= rk+1 (34)

where rk+1 = f
(

x(m)
k , uk

)
for a proper value of uk. However, the expression of Equation (34) holds

in ideal conditions. However, the model-reality mismatch and measurement errors are properly
managed by means of the fuzzy modeling scheme recalled in Section 3. In this way, the difference
|rk+1 − f

(
x(m)

k , uk

)
| can be made arbitrarily small by a suitable selection of the model parameters,

i.e., the fuzzy membership functions µ
(c)
i , the number of clusters M, and the regressand a(c)i , b(c)i .

Moreover, as highlighted in Figure 5, the fuzzy model of the process is used for providing the state
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vector x(m)
k . Therefore, the state of the fuzzy controller x(c)k is updated using the process model state

x(m)
k and the reference input rk. These computations are performed using standard matrix operations,

thus making the algorithm suitable for real-time implementations [30].
Note that, with reference to the data-driven fuzzy approach, the stability issue is analyzed here

both during the estimation stage and in simulation. On the one hand, the derivation of the fuzzy
regulator is achieved in practice by means of a dynamic inversion of the process model of Equation (30).
In fact, by using the fuzzy approach considered here, this dynamic inversion of the process model
of Equation (31) is achieved by means of the computation of the TS fuzzy prototype describing the
controller model of Equation (33). In more detail, the derivation of the fuzzy controller relies on
two steps. In the first step, the fuzzy model of the controlled process of Equation (31) is obtained.
This model is used to estimated the prototype of the fuzzy regulator of Equation (33). In fact, the fuzzy
model of the process is exploited to generate the state x(m)

k and the other signals yk that are required
for the identification of the fuzzy model of the controller. Note also that in this iterative procedure,
the simulations are performed using only one-step-ahead predictions provided by the relations of
Equations (31) and (33). In this way, the practical implementation of this algorithm does not suffer
from convergence problems. Moreover, the minimization of the difference between the reference and
the desired output |rk+1− f

(
x(m)

k , uk

)
|with proper accuracy guarantees the derivation of the optimal

fuzzy controller. The analytical proof of the stability of the overall system can rely on Lyapunov theory,
as described, e.g., in [31]. On the other hand, the stability of the overall system is verified in simulation,
when the proposed fuzzy regulator is applied to the wind turbine benchmark and the Monte Carlo
tool is considered. These simulation results will be summarized in Section 4.

As already remarked, the effects of the model uncertainty and disturbance lead to a different
behavior of the model with respect to controlled process, thus resulting in a mismatch between
the process outputs yk and their references rk. This mismatch can be compensated by means of the
on-line mechanism described by the expressions of Equations (31) and (33). These issues motivate the
model-based strategy relying on the adaptive algorithm proposed in Section 3.2.

Note finally that the fuzzy controller proposed in this section and depicted in Figure 5 will replace
the baseline wind turbine regulator of Section 2 and reported in Figure 4.

3.2. Model-Based Adaptive Control Scheme

This section describes the model-based adaptive control strategy used in connection with the
on-line estimation scheme presented above. In more detail, with reference to the wind turbine system
recalled in Section 2, adaptive controllers for processes of second order (na = n = 2) are designed.
Moreover, the considered adaptive controllers are based on the trapezoidal method of discretisation.

With reference to Equation (15), the transfer function of the time-varying controlled system with
na = nb = n = 2 is considered, whose parameters estimated using the on-line identification approach
recalled above:

θ̂k =
[

â1, â2, b̂1, b̂2

]T
(35)

Note that the subscript k for model and controller parameters will be dropped in order to simplify
equations and formulas.

The control law corresponding to the discrete-time adaptive controller in its difference form
of Equation (36): {

∆ek = ek − ek−1

uk = K̂p

[
∆ek +

Ts
T̂I

∆ek
2

]
+ uk−1

(36)

with ek representing the tracking error, with ek = rk − yk, and rk the reference (set-point) signal. Ts is
sampling time. The controller parameters K̂p and T̂I are here time-varying and derived from the on-line
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model parameters in the vector θ̂k. The control law can be represented also in its feedback formulation
as described by Equation (37):

uk = q̂0 ek + q̂1 ek−1 + uk−1 (37)

where the new controller variables q̂0 and q̂1 (or K̂p and T̂I) are derived from the relations of
Equation (38):  q̂0 = K̂p

(
1 + Ts

2 T̂I

)
q̂1 = −K̂p

(
1− Ts

2 T̂I

) (38)

where the parameters K̂p and T̂I are functions of the (time-varying) critical gain and the critical period
of oscillations, respectively, KPu and Tu:

K̂p = 0.6 K̂Pu , T̂I = 0.5 T̂u (39)

that depend on the time-varying model parameters in the vector θ̂k. In particular, when considering
a second order model described by its (time-varying) parameters â2, â1, b̂2 and b̂1, the variables K̂Pu

and T̂u required by the Ziegler-Nichols method used in this work are computed at each time step k
from the following relations [32,33]: K̂Pu = â1−â2−1

b̂2−b̂1

T̂u = 2πTs
arccos γ̂ , with γ̂ = â2 b̂1−â1 b̂2

2 b̂2

(40)

In this way, the adaptive discrete-time linear controllers of Equations (36) or (37) are designed
on the basis of the time-varying linear model of Equation (15) estimated via the on-line identification
scheme from the data of the nonlinear wind turbine process of Equation (9).

Note that the adaptive regulators considered in this section were implemented in the
Simulink R© environment, integrating also the on-line estimation scheme recalled above.

The simulation set-up employs three adaptive regulators used for the control of the blade pitch
angle β(t), and the generator control torque τr(t), in the partial and full load working conditions,
by using the controlled outputs ωg(t) and Pg(t). The complete block scheme is shown in Figure 6.

Partial-load
controller

Full-load
controller

Switch

Adaptation
mechanism

P (t)
g

� (t)
r

� (t)
g

� (t)
g

� (t)
g

P (t)
g

� (t)
r

�(t)=0

�(t)

�(t)

� (t)
r

Figure 6. Diagram of the adaptive control strategy.

Note that, the adaptive control scheme represented in Figure 6 will replace the baseline wind
turbine controller recalled in Section 2 and depicted in Figure 4. In this way, the adaptive controller
should be able to manage possible uncertainty affecting the wind turbine system, thus allowing one to
improve the performance of the baseline wind turbine control described in Section 2.

Note that an important point concerns the stability issue when the switching of the controllers
is considered, and it can be solved as bumpless transfer for adaptive control. In more detail,
in the adaptive control setting, the controller output can have undesired transients (bumps), if a current
on-line controller and a new controller to be switched have different outputs at the switching instant.
To attenuate these bumps associated with controller switching, which could lead to stability problems,
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a variety of bumpless transfer methods have been suggested. As in this case, the plant is not precisely
known at the outset, and the goal of adaptive control is to change the controllers to improve
performance as plant data begins to reveal some information about the plant. Thus, in adaptive
switching control an exact plant is generally unavailable at the time of switching. Moreover, in the
adaptive application considered in this work where the true plant model may only be poorly known at
controller switching times, it may be preferable to employ a bumpless transfer technique that does
not depend on a precise knowledge of the true plant model. Therefore, the bumpless transfer method
presented in [34,35] based on the slow decomposition of the controller is considered. It consists of
a method that can be implemented without precise knowledge of the true plant at switching times.
In particular, by appropriately re-initializing the states of the controller modes at switching times,
this method ensures that not only will the controller output be continuous, but also that it avoid fast
transient bumps after switching.

Another key aspect concerns the possible non-minimum phase behavior of the considered
wind turbine. In this case, the self-tuning design procedure represented by Equations (39) and (40)
would lead to poor performances. However, it is worth noting that according to Section 2, there are
two possible regions of turbine operation, namely the high and low wind speed regions. High-speed
operation is frequently bounded by the speed limit of the machine. Conversely, regulation in the
low-speed region is usually not restricted by speed constraints. However, the system has possible
non-minimum phase dynamics in this low-speed region. Moreover, this behavior in the low-speed
region can be observed for very low tip-speed-ratio, i.e., when λ is near to zero. However, as presented
by the paper in Section 4, the condition λ ≈ 0 is always not satisfied, also for low wind speed. Therefore,
the benchmark under consideration can present non-minimum features only for working conditions
different from the ones considered in Section 2. However, alternative design methodologies that take
into account time delay behavior can be found, e.g., in [36]. Considering again Equation (46), the Taylor
approximation of a time delay transfer function leads to verify that an inverse response time constant
Tinv

o (negative numerator time constant in Equation (46)) may be approximated as a time delay:

(−Tinv
o w + 1) ≈ e−Tinv

o w (41)

This represents the deteriorating effect of an inverse response similar to that of a time delay. In the
same way, a lag time constant τs may be approximated again as a time delay:

1
τs w + 1

≈ e−τs w (42)

Furthermore, considering the product of Equations (41) and (42), it follows that the effective delay
L of Equation (43) can be taken as the sum of the contribution from the various approximated terms
Tinv

o and τs. In addition, for digital implementation with sampling period Ts, L can consider also
the contribution of the D/A converter Ts/2. Therefore, the approximation of Equation (43) is valid,
and an approximate first-order time delay stable model is obtained as already shown by Equation (43):

k
w τo + 1

≈ e−w L (43)

where k is the model gain, τo the dominant lag time constant, and L the effective time delay.
Under these assumptions, the following rules for the tuning of the PI controller can be exploited
for first-order time delay (non-minimum phase) models:{

K̂p = 1
k

τo
τc+L

T̂I = min{τo , 4 (τc + L)}
(44)
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where τc is the desired first-order closed-loop response time and represents the only tuning parameter.
Small values of τc lead to response fast speed, whilst large values for stable and robust behavior.
A good rule would suggest to set τc = L for fast response with good robustness properties [36].

It is worth noting that the work [37] provided an analytical demonstration of the stability of an
adaptive control scheme for wind turbines.

Finally, Section 4 will show the achieved results regarding the design and the application of the
adaptive controller to the data from the wind turbine benchmark.

4. Simulations and Comparisons

This section presents the simulation results achieved with the proposed control methods relying on
both the fuzzy modeling technique oriented to the identification of the fuzzy controller description, and
the adaptive control strategy using the on-line estimated models. The simulations obtained with these
regulators are summarized in Section 4.1. Moreover, the reliability and robustness analysis, followed
by extended comparisons with respect to different control solutions are reported in Sections 4.2 and 4.3,
respectively. Further simulations will be reported in Section 4.4 for verifying the stability properties of
the proposed solutions, whilst Section 4.5 will provide some final remarks.

4.1. Controller Performance Tests

Regarding the fuzzy modeling and identification method, the GK clustering algorithm recalled
in Section 3 with a number M = 3 of clusters and delays n = 2. These variables were applied for
clustering the first data set consisting of

{
Pgk, ωgk, βrk

}
. A number of samples k = 1, 2, . . . , N

were considered with N = 440× 103. The same number of clusters and shifts were exploited for
clustering the second data set

{
Pgk, ωgk, τgk

}
. After this procedure, the structures of the TS prototypes

were derived for each output yk equal to Pgk and ωgk. In this way, the two continuous-time outputs
y(t) =

[
ωg(t), τg(t)

]
of the wind turbine continuous-time model of Equation (9) are approximated by

two TS fuzzy prototypes of Equation (14).
The performances of the fuzzy models that are derived using the procedure described above can

be evaluated using the so-called Variance Accounted For (VAF) parameter [6]. In particular, the TS
fuzzy model reconstructing the first output has a VAF index bigger than 90%, whilst for the second
one, it was higher than 99%. This means that the fuzzy prototypes are able to describe the behavior of
the controlled process with very good precision. These estimated TS fuzzy models have been used for
the derivation of the fuzzy controllers and applied to the considered wind turbine benchmark.

Two fuzzy controllers with 2 inputs and 1 output have been used for the control of the wind
turbine system. As shown in Figure 4, these controllers are both fed by the sampled signals Pgk, ωgk (i.e.,
the outputs of the wind turbine system) for the generation of the sampled signals βk and τr(t) (i.e., the
control inputs for the wind turbine system). By using the inverse model principle, they were estimated
exploiting the methodology recalled in Section 3.1. Again, the GK fuzzy clustering method has lead to
two fuzzy regulators applied to the data sets

{
βk, Pgk, ωgk

}
and

{
τgk, Pgk, ωgk

}
, respectively, with

M = 3 clusters and n = 3 lagged signals.
The controller performances were verified and validated via extensive simulations by considering

different data sequences generated via the wind turbine simulator. Table 4 reports the values of the
delay time Td, settling time Ta, maximum overshoot S% and the per-cent Normalized Sum of Squared
tracking Error (NSSE%) index defined in Equation (45):

NSSE% = 100

√√√√√∑N
k=1

(
rk − yk

)2

∑N
k=1 r2

k

(45)

Note that in partial load operation (Region 1), the performance is represented by the comparison
between the power produced by the generator, yk = Pgk, with respect to the theoretical maximum
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power output, rk = Pr. On the other hand, in full load operation (Region 2), the tracking error is
given by the difference between the generator speed, yk = ωgk and its nominal value, rk = ωnom.
The achieved results are shown in Figure 7 for the case of the identified fuzzy controllers.
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Figure 7. Generator speed ωg and power Pg (bold gray line) with respect to their references
(dashed black line) ωnom and Pr with the fuzzy controllers.

Figure 7 depicts the signal representing the controlled generator speed ωg and the generated
power Pg in gray bold gray line with respect to their desired values ωnom and Pr in dashed black
line, respectively. It can be noted that in both partial and full load conditions, the fuzzy controllers
are able to track the reference signals, as recalled in Section 2. Note that the performance of the fuzzy
regulators are better than those achieved via the baseline governors, which were tuned with frequency
approaches described in [23,24].

With reference to the second adaptive design approach using adaptive solutions, the two outputs
Pg(t) and ωg(t) of the wind turbine continuous-time nonlinear model of Equation (9) were
approximated by two second-order time-varying discrete-time models of Equation (15) with two inputs
and one output. Using these two LPV prototypes, the model-based approach for determining the
adaptive controllers recalled in Section 3.2 was exploited and applied to the wind turbine benchmark
of Section 2. Thus, according to Section 3.2, the parameters of the adaptive controllers were computed
on-line. In particular, for each output, two second-order (na = nb = 2) time-varying prototypes
were identified, and the adaptive regulator parameters in Equations (36) or (37) were computed
analytically at each time step k. Also in this case, with reference to the adaptive controller structure
of Equations (36) or (37), the parameters of the adaptive controllers were tuned on-line via the
Ziegler-Nichols rules, applied to the LPV models. This adaptive procedure is already implemented
and available in [32,33]. In this way, if both the model on-line parametric identification and the
regulator recursive tuning procedure are exploited, the parameter adaptation mechanisms should lead
to good control performances.

The simulations with the adaptive regulators have been obtained in the same situation of the
fuzzy controllers. In this case, three on-line regulators were exploited for the compensation of both
the blade pitch angle β(t) and the generator torque τg(t), in Region 1 and Region 2. The adaptive
algorithm described above run with initial values for its parameters reported in Table 3.

Table 3. Initialization parameters of the adaptive algorithm.

Recursive Algorithm Parameter Value

θ̄(0) [0.1, 0.15, 0.20, 0.25 0.30, 0.35]T

Σψ̃(0) 10−1 I7
δ 0.995

Also with reference to the model-based adaptive approach, Figure 8 depicts both the controlled
outputs Pg and ωg in bold gray lines with respect to their reference values Pr and ωnom, respectively,
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in dashed black lines. As will be seen in the following, also for the case of the adaptive regulators,
Figure 8 highlights that this approach leads to interesting performances.
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Figure 8. Pg and ωg tracking capabilities in partial and full load conditions with the adaptive controllers.

Note that the recursive scheme is able to react actively with respect to variations of the working
conditions of the wind turbine system. In fact, the fuzzy method can be considered a passive
(even if robust) control solution, since the controllers are identified to passively tolerate the disturbance
acting on the system. On the other hand, the adaptive methodology is able to counteract any
variation or disturbance effects of the controlled process, thus representing an active control solution.
These definitions were provided for different frameworks, e.g., in [38,39].

As further example, Figure 9 depicts the main wind turbine model variables in full load
working conditions.
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Figure 9. Variables of the benchmark in full load operation.

In particular, Figure 9 depicts the wind signal v(t), the generator speed ωg and power Pg, and the
control input β.

In order to analyze the performance of the proposed adaptive strategy, Table 4 reports also the Td,
Ta, S% and NSSE values computed for these controllers.

Table 4. Controllers in partial and load operations: Td, Ta, S% and NSSE% values.

Controller Partial Load Full Load Delay Time Settling Time Max. Overshoot
Type NSSE% NSSE% Td Ta S%

Baseline governors 46.68% 20.96% 0.89 s 2 s 21%
Fuzzy controllers 37.17% 17.85% 0.02 s 0.26 s 7%

Adaptive controllers 28.73% 13.67% 0.01 s 0.14 s 3%

According to the simulation results summarized in Table 4, good tracking capabilities of the
suggested adaptive controllers seem to be reached, and they are better than both the fuzzy regulators
and the baseline governor, recalled in Section 2.
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4.2. Robustness Analysis

This section summarizes further simulation results that concern the evaluation of the achieved
characteristics of the developed control strategies when the effects of uncertainty and disturbance are
taken into account.

In particular, the wind turbine benchmark in the MATLAB R© and Simulink R© environments
can vary the variables and the parameters of the simulated process in a statistical way. In this way,
it is possible to analyze the effects of the model-reality mismatch and the measurement errors on the
designed controllers. Moreover, a Monte Carlo analysis is also considered since it represents a practical
approach for validating and verifying the features of the developed control schemes when applied to
the considered wind turbine process. The same approach was for suggested for the first time by the
same authors in [40] and applied to a different simulated system. The Monte Carlo tool is very useful
in this case since the behavior of control strategies designed assuming the nominal plant depends on
both the model-reality mismatch and the measurement errors.

Under these considerations, the uncertainty values of the parameters and variables of the wind
turbine simulator considered in this work are summarized in Table 5. Therefore, the Monte Carlo
analysis was achieved by modeling these parameters and variables as Gaussian stochastic processes,
with mean values equal to the nominal ones, and standard deviations corresponding to realistic
error values, typical of wind turbine models [3].

Table 5. Wind turbine uncertain variables.

Model Variable/Parameter Standard Deviation

β(t) 11%
ωg(t) 18%
τg(t) 21%
Pg(t) 20%

Pitch 2nd order model
natural frequency and damping ratio 49%

Drive train model efficiency 5%
Converter 1st order model time constant 50%

Therefore, for the evaluation of the reliability and robustness characteristics of the designed
control schemes, the average values of the NSSE% index were computed and evaluated in simulation
via 1000 Monte Carlo runs. Note that, as already remarked in Section 3, proper algorithms were
exploited for guaranteeing the derivation of controller models that lead to stable closed loops.
On the other hand, the stability of the closed loop system when adaptive algorithms are exploited was
investigated in [37].

Note however that, if unstable models should be obtained due to large uncertainties of Table 5,
gain and phase margin requirements have to be included in the controller design, as described,
e.g., in [41], and the controller parameters can be computed using the w-plane design. In this case,
it can be shown that the model of Equation (15) with na = nb = n = 2 is transformed into its equivalent
description of Equation (46):

Ts (b1 Ts − b2 Ts)w2 + (−2 b1 Ts + 2 b2 Ts + Ts (2 b1 + 2 b2)) w− 4 b1 − 4 b2

(a1 T2
s − T2

s − a2 T2
s )w2 + (4 a2 Ts − 4 Ts)w− 4− 4 a2 − 4 a1

≈ k
w τo − 1

e−w L (46)

Under the validity of the approximation of Equation (46), which neglects the fast dynamic
stable modes, and consider only the unstable pole τo with the effective delay L (see, e.g., the approximation
in [36]), the adaptive controller parameters are computed via the relations of Equation (47):
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Kp =
δ τo

Am k
TI =

1
π
2 δ− δ2 L− 1

τo

δ =
Am φm + π

2 Am (Am − 1)
(A2

m − 1) L

(47)

The relations of Equation (47) provide the parameters Kp and TI of the adaptive regulator that
allow one to obtain the gain and phase margins (Am, φm) for the identified (unstable) model of
Equation (46). Note that, even if approximations are used to derive the tuning formulas of (47),
it can be seen that the achievable gain and phase margins can be quite close to the specified ones,
and in general within a 5% of maximal error.

After these considerations, Table 6 reports the average Td, Ta, S% and NSSE% values by
considering the effects on the input and output measurements given by the alteration of the
model variables and parameters reported in Table 5. Moreover, Table 6 shows how the considered
control strategies, and especially the adaptive approach, is able to achieve excellent performances even
in the presence of considerable error and uncertainty effects.

Table 6. Monte Carlo analysis for the considered control schemes.

Control Partial Load Full Load Delay Time Settling Time Max. Overshoot
Strategy NSSE% NSSE% Td Ta S%

Baseline governors 48.23% 21.75% 0.91 s 2.5 s 23%
Fuzzy controllers 37.19% 17.94% 0.04 s 0.34 s 8%

Adaptive controllers 24.52% 13.72% 0.02 s 0.18 s 4%

The achieved results highlight also that Monte Carlo tool represents an effective and practical
instrument for validating and verifying in simulation the design reliability and robustness of the
considered control methodologies with respect to modeling uncertainty and measurement errors.

Note finally that the results summarized in Table 6 serve to verify and validate the overall
behavior of the developed control techniques, when applied to the considered wind turbine benchmark.
In more detail, the values of the NSSE% index highlights that when the mathematical description
of the controlled dynamic processes can be included in the control design phase, model-based
techniques yield to the best performances, even if an optimization procedure is required. However,
when modeling errors are present, the off-line learning exploited by the fuzzy regulators allows one to
achieve results better than classical schemes. For example, this consideration is valid for the baseline
PID controllers recalled in Section 2 derived via trial and error procedures. On the other hand, fuzzy
controllers have led to interesting tracking capabilities. With reference to the adaptive scheme, it takes
advantage of its recursive features, since it is able to track possible variations of the controlled systems,
due to operation or model changes. However, it requires quite complicated and not straightforward
design procedures relying on adaptive and recursive algorithms. Therefore, fuzzy-based schemes use
the learning accumulated from off-line simulations, but the training stage can be computationally
heavy. Finally, concerning the standard PID control strategy, it is rather simple and straightforward,
even if the achievable performances are quite limited when applied to nonlinear dynamic processes.

4.3. Performance Verification and Comparisons

The evaluation of the performances of the data-driven and model-based control strategies
considered in this paper has been evaluated also on the basis of the following performance metrics,
borrowed and modified from the fault diagnosis framework [40]:

• False Tracking Rate (FTR): the ratio between the total number of wrongly reference tracking and
the number of simulations;
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• Missed Tracking Rate (MTR): the ratio between the total number of missed reference tracking and
the number of simulations;

• Correct Tracking Rate (CTR): the ratio between the number of correct reference tracking and the
number of simulations;

• Mean Tracking Delay (MTD): the delay time between the reference tracking and the
reference timing.

With reference to the indices above, note that the CTR index is complementary to MTR, since they
refer to the tracking capabilities in the presence of uncertainty and disturbance. In contrast, the FTR
index describes the tracking performance achieved only by the control designs, without considering
any errors or anomalies occurring in the system. On the other hand, the MTD index considers the
average delay occurring during the tracking of the reference signals.

Also in this case, a proper Monte Carlo analysis has been performed in order to compute these
performance metrics and to test the robustness of the considered control schemes. A set of 1000 Monte
Carlo runs has been performed, during which realistic wind turbine uncertainties have been considered
as described in Table 5. Moreover, in addition to the considered fuzzy and adaptive strategies,
the performance metrics of other control schemes are analyzed.

The first alternative approach considered here uses a Support Vector machine based on a Gaussian
Kernel (GKSV) originally developed in [42] and it was exploited here for control purpose. The scheme
defines a vector of features for each working condition of the wind turbine, which contains
relevant signals obtained directly from measurements, filtered measurements or their combinations.
These vectors are subsequently projected onto the kernel of the Support Vector Machine (SVM),
which provides suitable control sequences for all of the defined working conditions.

The second scheme consists in an Estimation-Based (EB) solution shown in [43]. In particular,
a bank of observers is designed to estimate the control signals that have to feed the controlled process.
These observers were designed on the basis of a system linear model.

The third method relying on Up-Down Counters (UDC) was addressed in [44]. These tools,
are commonly used in the aerospace framework, and they provide a different approach to the decision
logic usually applied to the control. Indeed, the design of the control signals involves discrete-time
dynamics and is not simply a function of the plant working conditions.

The fourth approach refers to Combined Observer and Kalman (COK) filter methods [45]. It relies
on an observer used as a control signal residual generator, when the wind speed is considered
a disturbance. This observer was designed to decouple the disturbance and simultaneously achieve
optimal reference tracking in a statistical sense.

Finally, the fifth method is a General Fault Model (GFM) scheme, which is a method of automatic
design [46]. The design strategy consists of three main steps. In the first step, a large set of potential
controllers is designed. In the second step, the most suitable control signals to be included in the
final system are selected. The third step tests the selected set of control laws, on the basis of extended
comparisons of the estimated probability distributions of the tracking errors, evaluated with and
without uncertainty or disturbance effects.

The results of the comparative analysis are summarized in Table 7, tacking into account the
uncertainty effects reported in Table 5. The different control approaches are analyzed and compared.

The results summarized in Table 7 serve to highlight the efficacy of the considered control
solutions also with respect to different schemes. In details, both the data-driven and model-based
approaches seem to work better than other approaches, and they have a noteworthy performance
level considering the mean delay time, which is significantly low. Furthermore, the FTR and the MTR
indices are lower than those of other approaches. However, for both model-based and data-driven
designs, optimization stages are required, for example for the selection of the GK clustering algorithm.
Furthermore, the GKSV approach presents quite high delays, with big FTR and MTR. EB has
comparable performance with respect to GKSV in terms of FTR, CTR and MTR, but with lower
MTD. UDC can show quite high FTR in both the working conditions. COK and GFM have similar
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performances, with important MTD, FTR and MTR. However, in general, the proposed data-driven
and model-based approaches are able to achieve good tracking capabilities, with minimum MTD,
and higher CTR with respect to the other control methodologies.

Table 7. Comparison of the different control strategies applied to the wind turbine benchmark.
GKSV, Support Vector machine based on a Gaussian Kernel; EB, Estimation-Based; UDC, Up-Down
Counters; COK, Combined Observer and Kalman; GFM, General Fault Model; FTR, False Tracking
Rate; MTR, Missed Tracking Rate; CTR, Correct Tracking Rate; MTD, Mean Tracking Delay.

Working Condition Index GKSV EB UDC COK GFM Fuzzy Adaptive Baseline

FTR 0.234 0.224 0.123 0.003 0.235 0.001 0.018 0.403
Partial MTR 0.343 0.333 0.232 0.029 0.532 0.003 0.001 0.596
Load CTR 0.657 0.667 0.768 0.971 0.468 0.997 0.999 0.404

MTD (s) 47.24 44.65 69.03 19.32 13.74 0.08 0.08 70.87

FTR 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003
Full MTR 0.002 0.003 0.002 0.003 0.002 0.001 0.001 0.003

Load CTR 0.978 0.977 0.987 0.977 0.982 0.999 0.999 0.865
MTD (s) 0.03 0.03 0.04 0.32 0.05 0.02 0.01 0.89

4.4. Stability Analysis

The stability properties of the proposed control strategies have been checked by means of a Monte
Carlo campaign based on the wind turbine benchmark. In fact, the Monte Carlo analysis represents
the only method for estimating the efficacy of the developed control schemes when applied to the
monitored process. It is worth noting that the works [31,37] suggested an analytical demonstration of
the stability of fuzzy and adaptive control schemes, whilst some practical issues were remarked in
Sections 3.1 and 3.2 for the fuzzy approach and the adaptive strategy, respectively.

All simulations were performed by considering noise signals modeled as Gaussian processes,
according to the standard deviations reported in Table 5. Different wind sequences were generated by
the wind turbine benchmark simulator. Moreover, the initial conditions of the dynamic models recalled
in Section 2 (i.e., the drive-train, the generator/converter, and the pitch system) were changed randomly.
Therefore, the random wind signal v(t), the parameters of Table 5, and the dynamic model initial
conditions allowed obtaining different sequences of the wind turbine signals β(t), τg(t), λ(t), ωg(t),
and Pg(t) for each Monte Carlo simulation.

As an example of a single Monte Carlo run, Figure 10 highlights that the main wind turbine
model variables, such as the generator torque τg(t), the tip-speed-ratio λ(t), and the generator power
Pg(t) remain bounded around the reference values, proving the overall system stability in simulation,
even in the presence of disturbance and uncertainty. These results refer to the case of full load operation
with the data-driven fuzzy controllers.
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Figure 10. Sensitivity analysis in full load conditions with the data-driven fuzzy regulators.



www.manaraa.com

Appl. Sci. 2018, 8, 29 24 of 28

As further Monte Carlo example run, the results achieved with the model-based adaptive
controller in full load are summarized in Figure 11.
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Figure 11. Simulations in full load with the adaptive controllers.

Figure 11 depicts the perturbed signals representing the generator speed ωg(t) and power Pg(t),
with respect to their nominal values. Also in this case, the main wind turbine variables remain bounded
around the reference values, thus assessing the overall system stability in simulation, even in the
presence of modeling errors and disturbance.

4.5. Final Remarks

The application examples considered in this paper have highlighted how the availability of an
accurate simulator of a wind turbine system has reached its maturity level, as shown in Section 2.
Therefore, most of the insight has been given into the control techniques, resulting in advanced and
refined solutions, which can include a variety of sub-functions, such as the optimal set-point generation,
the set-point following and supervisory tasks, when considering the different operation requirements.
In addition to these aspects, advanced control strategies relying on two approaches, such as data-driven
and model-base strategies, have been considered for comparison purposes, as articulated in Section 3.

It is clear that further ‘levels’ of control can be required in wind turbine applications, which were
not considered in this study. There is a top level of supervisory control that verifies the available
energy source and can limit the operation of the device accordingly, also in case of extreme conditions.
These limitations may be implemented in order to preserve the system integrity, ensure safe operation
or be required by legislation, as for the case of wind turbines and their cut-out wind speed limits.
This situation is represented in Figure 3b, when the wind turbine operates in full load conditions
(above the rated wind speed). On the other hand, it is also developed to work for generating electric
energy when the wind speed is below its rated wind speed and an optimal reference has to be tracked,
as highlighted by Equation (10). In this case, the maximum-energy transfer is required. However,
wind turbine plants can also work outside their nominal operating conditions, and some supervisory
module may be required to ensure the device integrity. This supervisory strategy is important, and it
can represent the key point also for the safety of these energy conversion systems, as discussed by the
authors, e.g., in [47], but not considered here.

Control systems remain often hidden, since they are incorporated within the devices themselves.
They are fundamental for energy conversion systems and can represent the key point technologies
for achieving optimal performance, improving energy conversion and guaranteeing safety. Moreover,
the solution of incorporating control technology is very appealing for several systems, since the
addition of extra control features may be obtained by simply adding software functions [48].
In some cases, this solution avoids the requirement of expensive additional sensors and actuators [49].
However, this relatively straightforward implementation can require both sophisticated control
methodologies and complicated mathematical formulations. For example, concerning wind turbines,
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many high-performance model-based control schemes can require high-fidelity simulators of the
controlled plants [50]. Nevertheless, there is usually a trade-off between the incorporation of advanced
control techniques and the requirement of expensive technology, both used to improve the performance,
reliability and safety of the monitored systems.

In particular with reference to the proposed strategies, some further comments can be
drawn in general, concerning the key aspects of these advanced control solutions, with respect
to the baseline PID governors proposed in Section 2. The NSSE% values obtained with the
proposed control strategies are lower. Standard industrial controllers, such the classic PID regulators
recalled in Section 2, are quite simple and have the benefit of quite straightforward tuning of
their parameters. However, when exploited for controlling nonlinear dynamic processes, the control
laws may lead to limited performances. Therefore, this point motivates the use of more advanced
control solutions, as highlighted by the results summarized in this section. In particular, when the
modeling of the dynamic process can be perfectly achieved, model-based control strategies
generally represent the best option. However, when modeling errors and uncertainty effects are
important, control schemes relying on active or adaptation mechanisms can show interesting features.
On the other hand, with reference to pure data-driven methodologies, and in particular to the design of
the fuzzy controllers, the off-line optimization can allow one to reach quite good results. Other control
techniques can take advantage of their robustness characteristics, but with quite complicated and not
direct design methodologies. Therefore, concerning the considered methods relying on adaptive and
fuzzy tools, they can appear rather straightforward, even if optimization strategies have to be applied.

Finally, in theory, the development of the design of a complete plant should be performed from
the top down. However, physical systems are often designed by discipline-specific experts, whilst the
related control aspects are considered in a further stage by control engineers. Such an approach,
even if common in industrial applications of control, is non-optimal, and integrated approaches should
be considered, as described, e.g., in [51].

5. Conclusions

The work addressed two control examples for a wind turbine dynamic simulator, since it was
proposed as a benchmark representing a complex dynamic system driven by stochastic disturbances
and uncertain load conditions. Moreover, the aerodynamic models of these processes are nonlinear,
thus making their modeling a challenging problem. Therefore, the design of control strategies for
these complex processes has to consider these aspects. In this way, the paper analyzed the design of
two data-driven and model-based control methodologies, which represented viable, reliable and robust
control schemes for the proposed wind turbine benchmark. Experiments with the wind turbine
simulator and the Monte Carlo tool were the practical instruments for assessing the most important
characteristics of the developed control methodologies, when the model-reality mismatch and
measurement errors were also considered. The analyzed control methods were finally compared with
respect to different control solutions proposed in the related literature, in order to highlight advantages
and drawbacks of the developed strategies. The obtained results showed that the considered solutions
represent viable, robust and reliable control applications to real wind turbine systems.
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